Synopsis of Original Research Paper

Preparation and Characterization of Calcium Hydroxyapatite Particles with UV Absorption Property From Forced Hydrolysis Reaction

Kazuhiko Kandori

School of Chemistry, Osaka University of Education

Ti and Ce ions doped calcium hydroxyapatite (TiHap and CeHap) particles were produced by aging Ca(OH)₂, TiCl₄ (or CeCl₃) and sodium triphosphate (sodium tripolyphosphate, Natpp: Na₅P₃O₁₀) mixed solution at 100°C for 18 h. The ellipsoidal secondary particles with ca. 100~150 nm in length composing by aggregation of small ellipsoidal primary particles with ca. 20 nm in length were produced at atomic ratio of Ti/(Ca+Ti) $[X_{Ti}] \leq 0.2$. The *in-situ* IR spectra of these TiHap particles exhibited very small bulk OH⁻ band at 3570 cm⁻¹. This result indicated that the TiHap particles were produced by aggregation mechanism and OH ions along with c-axis in the poorly crystallized primary particles were disordered. The diffuse reflectance UV spectra of TiHap particles revealed that these particles have a UV absorption property, especially produced at X_{Ti}=0.1. The morphology of the particles produced with CeCl₃ was changed to rod-like with ca. 50~100 nm in width and 100~300 nm in length at $0.1 \le X_{Ce} \le 0.2$. Furthermore, particle shape varied to needle-like at $0.4 \leq X_{Ce} \leq 0.8$ and finally fine spherical particles with 5~10 nm in diameter were precipitated at X_{ce} =1.0. The XRD patterns of the particles indicated that highly crystallized pure CeHap particles are produced at $X_{ce} \leq 0.2$. On the contrary, the needle-like and very fine spherical particles precipitated at $X_{ce}=0.4\sim1.0$ were identified as CePO₄. The time resolved TEM and XRD measurements suggested that the rod-like large CeHap particles are produced by the Ostwald ripening mechanism. The diffuse reflectance UV measurement indicated that CeHap particles have a UV absorption property, especially produced at $X_{Ce}=0.15$.